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The effect of initial conditions on the growth rate of turbulent Rayleigh–Taylor (RT)
mixing has been studied using carefully formulated numerical simulations. A mono-
tone integrated large-eddy simulation (MILES) using a finite-volume technique was
employed to solve the three-dimensional incompressible Euler equations with numeri-
cal dissipation. The initial conditions were chosen to test the dependence of the RT
growth coefficient (αb) and the self-similar parameter (βb = λb/hb) on (i) the amplitude,
(ii) the spectral shape, (iii) the longest wavelength imposed, and (iv) mode-coupling
effects. With long wavelengths present in the initial conditions, αb was found to
increase logarithmically with the initial amplitudes, while βb is less sensitive to ampli-
tude variations. The simulations are in reasonable agreement with the predictions
for αb from a recently proposed model, but not for βb. In the opposite limit where
mode-coupling dominates, no such dependence on initial amplitudes is observed, and
αb takes a universal lower-bound value of ∼ 0.03 ± 0.003. This may explain the low
values of αb reported by most numerical simulations that are initialized with annular
spectra of short-wavelength modes and hence evolve purely through mode-coupling.
Small-scale effects such as molecular mixing and kinetic energy dissipation showed
a weak dependence on the structure of initial conditions. Initial density spectra
with amplitudes distributed as k0, k−1 and k−2 were used to investigate the role of
the spectral slopes on the development of turbulent RT mixing. Furthermore, in a
separate study, the longest wavelength imposed in the initial wavepacket was also
varied to determine its effect on αb. It was found that the slopes of the initial spectra,
and the longest wavelength imposed had little effect on the RT growth parameters.

1. Introduction
The Rayleigh–Taylor (RT) instability occurs when a light fluid (ρ1) accelerates a

heavy fluid (ρ2) in the presence of infinitesimal perturbations at the interface. The
instability is of interest to inertial confinement fusion (Lindl 1998), because it causes
mixing of shell material into the deuterium fuel decreasing the thermonuclear yield.
It is well-known (Chandrasekhar 1961) that for a single-mode perturbation with
amplitude h0 and wavelength λ= 2π/k in the linear regime (h � 1/k), the amplitude
grows exponentially according to:

h(t) = h0 cosh(Γ t) (1)
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where Γ =
√

Agk is the classical growth rate, and the Atwood number A= (ρ2 − ρ1)/
(ρ2 + ρ1) is the non-dimensional parameter that characterizes the density contrast. At
large amplitude (h > 1/k), nonlinearities reduce the growth rate and the amplitude
increases only secularly in time. In this regime, the light fluid penetrates the heavy fluid
as bubbles and the heavy fluid forms finger-like structures referred to as spikes. At
small A, bubbles and spikes have the same penetration depths, while this symmetry is
noticeably broken at higher density differences. The bubbles attain a terminal velocity
given by (see for instance Gonchorov 2002)

vb = c∞
√

Agλb/2, (2)

where the constant c∞ can be interpreted as a Froude number. Three-dimensional
bubbles are determined to have a value of c∞ ∼ 0.5 for A= 1 from single-mode studies
of bubbles in cylindrical geometries (Layzer 1955; Alon et al. 1995; Gonchorov
2002; Sohn 2003 – potential theory models; Davies & Taylor 1950; Collins 1967 –
experiments). The determination of c∞ at arbitrary Atwood numbers is more com-
plicated, and a detailed discussion of this and other effects is deferred until § 5. Thus,
for single-mode with fixed λ, the nonlinear RT growth rate is independent of the
initial amplitude.

In the presence of a spectrum of modes, the RT flow is dominated by successively
longer wavelengths λb because they have a larger terminal bubble velocity vb (equa-
tion (2)), given by:

dhb

dt
∝

√
λb. (3)

If the bubbles grow self-similarly, namely, they preserve their aspect ratio with
constant λb/hb = βb. Equation (3) is then solved by:

hb = αbAgt2, (4)

where αb is the RT growth constant associated with bubbles. Physically, self-similarity
could be achieved in two ways:

(i) bubble merger: the nonlinear coupling of two or more bubbles to form a larger
structure;

(ii) bubble competition: the growth and saturation of modes present in the initial
perturbations.

The first process involves the nonlinear coupling of saturated modes (h ∼ 1/k) and,
thus, may produce a universal αb (Glimm & Li 1988; Alon et al. 1995). The second
process depends on the initial conditions, albeit weakly since the initial growth is
exponential.

Birkhoff (1955) was the first to propose (4) based on a model for the competition
of individual modes to characterize the dependence of αb on the initial amplitudes for
two-dimensional flows. Birkhoff matched the velocity in the linear regime (obtained
from (1)) with the nonlinear terminal velocity (2) when hk ∼ 1/k, thus relating the
nonlinear amplitude of a mode to its initial magnitude – this technique is referred
to as the Fermi transition (Layzer 1955). Birkhoff’s model predicts a dependence of
αb on three parameters, namely, the initial amplitude of fluctuations h0k , the Froude
number Fr, and the threshold for the nonlinear transition (σ ∼ hkk). However, he
assumed fixed values for Fr, σ and h0k giving him a value for αb =0.06. Cherfils &
Mikaelian (1996) generalized Birkhoff’s model to arbitrary initial amplitudes, and a
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nonlinear threshold σ , giving for αb, at A = 1,

αb =
Fr

4
[
(2π)−1/2 ln(σ/h0k) − σ/Fr

] . (5)

Birkhoff’s model further suggests that for self-similarity (i.e. αb is time-independent)
to be established, the initial one-dimensional spectra should have amplitudes that
vary according to k−1 in the above equation.

One difficulty with Birkhoff’s model is that it considers only individual modes
in a bubblefront that do not interact with their neighbours, whereas Haan (1989)
postulated that adjacent modes in a wavepacket interfere constructively, so that
the Fermi-transition occurs when the quadrature sum of modal amplitudes in the
wavepacket is ∼ σ/k. Thus, individual modes may become nonlinear even when their
amplitudes are below the threshold owing to their interaction with adjacent modes.
Such a picture was very successful in relating the nonlinear saturation of the beam-
plasma instability for a single mode to the multi-mode case (DeNeef 1975; Dimonte
1982).

Dimonte (2004) combined the ideas of Birkhoff and Haan by applying the Fermi
transition to a self-interacting wavepacket in three-dimensions. The resulting model
equations are re-derived in the Appendix and summarized below:

αb =
C

√
π

4

[
ln

(
2C

√
π

k〈h0k〉

)
− 1

]−1

, (6)

βb =
2

√
π

C

[
ln

(
2C

√
π

k〈h0k〉

)
− 1

]−1

. (7)

We can interpret (4) to be the quadratic envelope of the growth curves of all such
individual modes (see figure 4 of Dimonte 2004). Equations (6) and (7) then suggest
that by changing the initial amplitudes, we may cause them to saturate earlier (or
later) and, thus, the quadratic coefficient of this envelope (αb) can be changed. Since
the disturbances grow exponentially up to saturation, the time to nonlinearity (and
thus αb) depends logarithmically on the initial amplitudes. Here, k〈h0k〉 is the non-
dimensional initial amplitude with k chosen to be the dominant wavenumber in the
initial spectrum, and 〈h0k〉 is the root mean square (r.m.s) of fluctuations computed
over a wavepacket of width δk (estimated in the Appendix). Thus,

〈hk〉 =

[
L2

2π

∫ k+δk

k−δk

h2
k′k

′ dk′
]1/2

. (8)

In (6) and (7), C is a modified Froude number defined as:

C = Fr

√
2

1 + A

Db

λ
, (9)

to accommodate ambiguities in the definition of a bubble wavelength and is further
discussed in § 5. From the above, it follows that for a spectral structure with hk ∼ k−2,
equation (8) gives for k〈h0k〉 a constant value independent of k. Consequently, as the
flow samples longer wavelengths, (6) and (7) produce a time-independent value of αb

and βb, resulting in self-similarity. Inagamov (1978) was the first to point out that a
k−2 initial spectrum is required for self-similarity in RT flows. This is equivalent to
requiring h0k ∼ k−1 for two-dimensional flows (Birkhoff’s model).

The implication of (4) is that the flow has lost memory of the initial conditions
and the only remaining independent length scale is the effective acceleration distance
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Agt2. However, a universal value for the growth constant αb has eluded both experi-
mental and numerical investigations. While experiments report higher values for αb of
0.05–0.07 (Dalziel 1993; Dimonte & Schneider 2000; Read 1984; Snider & Andrews
1994; Linden, Redondo & Youngs 1993), numerical simulations have often found
lower values of 0.02–0.03 (Youngs 1989 (two-dimensional) 1991, 1994, 2003; Cook &
Dimotakis 2001; Young et al. 2001; Dimonte et al. 2004). Simulations suffer from
significant numerical diffusion, which could also contribute to the reduction in the
value of αb. However, we argue in the following that these differences may be due to
variations in the structure and magnitude of the initial perturbations.

This analysis assumes the presence of long-wavelength perturbations in the initial
spectral content whose amplitudes govern their late-time self-similar growth. In the
opposite limit, where low-wavenumber modes have negligible energy compared with
the high-wavenumber content, long-wavelengths in the flow are generated largely
by the nonlinear coupling (Dimonte et al. 2004; Haan 1991) of modes (a process
insensitive to the initial conditions). The resulting evolution of bubble amplitudes is
thus independent of the initial conditions, and αb takes up a universal, lower bound
value of ∼ 0.03 ± 0.003 (Dimonte et al. 2004).

Youngs (2003) performed large-eddy simulations (LES) of RT instability at a
resolution of 720 × 480 × 480, initialized with a spectrum that had energy only in
the high mode numbers (90–180). The resulting flow evolved with a growth rate of
αb ∼ 0.027, which doubled to αb ∼ 0.057 with the addition of a single long wavelength
in the initial spectrum at a mode number of 2. Cook & Dimotakis (2001) in their
direct numerical simulations (DNS) of RT instability at a Reynolds number of ∼ 3000
(defined as Re = hḣ/ν), studied the effect of the initial spectral peak (at k = kmax) on
the growth rate. However, they report self-similarity only for the case with the highest
value of the peak wavenumber kmax. Again, their plots of αb show a lower value
than that obtained from experiments. We also note the DNS of Young et al. (2001)
employed an initial annular spectrum that evolves through mode-coupling, giving
αb ∼ 0.03. Simulations in which numerical diffusion is suppressed through a front-
tracking technique (Glimm et al. 2001) have found a higher value for αb ∼ 0.07. The
effects of numerical diffusion are discussed in § 4. Dalziel, Linden & Youngs (1999)
modelled the experimentally observed initial conditions in their three-dimensional
numerical simulations and obtained good agreement in both the large- and small-
scale features of the flow. They found that while global features such as αb depended
on the presence of long wavelengths in their initial conditions, small-scale features
such as the level of molecular mixing did not. Kadau et al. (2004) summarize
molecular dynamics simulations that obtain αb ∼ 0.05, but did not include a detailed
characterization of the initial conditions. The simulations were initialized with thermal
fluctuations, which were not varied to study the resulting αb behaviour. Figure 1 is
a summary of experimental and numerical values of α from published results from
codes over the period 1991–2004. Note that the higher values of α from numerical
simulations shown in figure 1 were obtained from the front-tracking simulations.

In this paper, we examine both the bubble-merger and bubble-competition limits
through three-dimensional numerical simulations with carefully imposed initial
perturbations. We explore the bubble competion limit with simulations initialized with
long wavelengths at different amplitudes. We also study the bubble merger limit with
simulations with annular spectra at different amplitudes for initial conditions. In addi-
tion, other possible influences on the growth rate, such as the spectral shapes (referred
to as the spectral index (SI) herein, and quantified as the exponent of the wavenuum-
ber, i.e. h0k = kS.I.), and the longest wavelength imposed are investigated here.
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Figure 1. Histogram of RT growth constant α from simulations and experiments.

The rest of the paper is organized as follows. In the next section, we describe the
numerical algorithm, and details of the computational set-up. Section 3 is a description
of the problem set-up and parameters. Results from a single-mode study to determine
the numerical viscosity of the computational scheme are summarized in § 4, and the
multi-mode studies are described in § 5. The conclusions are discussed in § 6.

2. Numerics
A three-dimensional third-order accurate finite-volume program RTI-3D, developed

by Andrews (1995), was used to solve the Euler equations. The non-Bousinesq
governing equations are

continuity :
∂(fiρi)

∂t
+

∂(fiρiu)

∂x
+

∂(fiρiv)

∂y
+

∂(fiρiw)

∂z
= 0, (10a)

x-momentum :
∂(fiρiu)

∂t
+

∂(fiρiu
2)

∂x
+

∂(fiρiuv)

∂y
+

∂(fiρiuw)

∂z
= −fi

∂p

∂x
+ fiBi,x,

(10b)

y-momentum :
∂(fiρiv)

∂t
+

∂(fiρiuv)

∂x
+

∂(fiρiv
2)

∂y
+

∂(fiρivw)

∂z
= −fi

∂p

∂y
+ fiBi,y,

(10c)

z-momentum :
∂(fiρiw)

∂t
+

∂(fiρiuw)

∂x
+

∂(fiρivw)

∂y
+

∂(fiρiw
2)

∂z
= −fi

∂p

∂z
+ fiBi,z,

(10d)

where the fis are the volume fractions of the ith fluid (f1 + f2 = 1); u, v, and w

are the velocities in the x-, y- and z-directions, respectively; and Bi,(x,y,z) is a body
force term (buoyancy). To avoid check-boarding of the pressure field, a staggered
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cell arrangement is used for the pressure and velocities, with the pressure node
located at the cell centre, while the velocities are computed at the cell faces. Explicit
timestepping was used in the solution of these equations, with the size of the time
step chosen to satisfy a Courant condition. A three-stage fractional step algorithm is
used to advance the solution in time. At each step, an advection calculation followed
by a Langrangian source term update is performed. In the Lagrangian calculation,
intermediate velocities are obtained as

u∗
E = u

n+1/2
E +

	t

ρi	x

(
pn

P − pn
E

)
+ gx, (11a)

v∗
E = v

n+1/2
E +

	t

ρi	y

(
pn

P − pn
N

)
+ gy, (11b)

w∗
T = w

n+1/2
T +

	t

ρ	z

(
pn

P − pn
T

)
+ gz, (11c)

where E, N and T are the east, north and top cell faces, and gx = gy =0. The
superscript n+ 1/2 denotes an intermediate value obtained after the advection update,
and the asterisk represents the results of the Lagrangian update. To satisfy continuity,
the net mass flux across each cell is set to zero:

δVE − δVW − δVN − δVS − δVT − δVB = 0, (12)

where, for example, δVE = 	t	y	z(un+1
E ρn+1

E ). Here, n+1 indicates updated velocities
that satisfy continuity, after a correction has been added so that un+1

E = u∗
E + 	uE

for velocities and pn+1
P = p∗

P + 	pE for pressure, where P represents the cell-centred
pressure node. Substituting the updated velocities into (11) and subtracting (11)
evaluated with the velocities at ∗, we get for the east-face velocity,

	uE =
	t

ρi	x
(	pP − 	pE), (13)

with similar expressions for the other components. Using these expressions in (12)
results in a Poisson equation for the pressure correction 	p.

−aP 	p + aE	PE + aW	PW + aN	PN + aS	PS + aT 	PT + aB	PB = −D, (14)

where, for instance,

aE = −	t	y	z

	x

(
f n+1

1,E

ρ1

+
f n+1

2,E

ρ2

)
. (15)

An iterative conjugate gradient algorithm is used to solve the Poisson equation. The
iterative procedure is repeated until the residual |D| in (14) summed over all the cells
is less than some specified threshold (= 10−4). Note that this is essentially the pressure
correction method popularized in the SIMPLE method (Patankar 1972). The solution
of (14) takes up most of the computational effort.

Of significant importance in the simulation of RT flows is the convection calculation
of the fluxes of mass and momentum. A third-order Van Leer method (Van Leer 1977)
was used to compute convective fluxes that minimizes numerical diffusion and prevents
spurious overshoots and undershoots, which occur because of the use of higher-order
numerical schemes. A two-phase, two-dimensional version of this code was tested and
validated for both RT and Kelvin–Helmholtz flows by Andrews (1995). The three-
dimensional single-phase version was used in Dimonte et al. (2004) to compute both
the single- and multi-mode RT problems, and it compared well with other benchmark
codes commonly used. While there is no specified physical viscosity, numerical
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Figure 2. Two-dimensional slice of computational domain used in numerical simulations:
ρ1 = 1 g cm−3, and ρ2 = 3 g cm−3.

diffusion damps out small scales in much the same manner as molecular diffusion. Such
schemes belong to the class of algorithms known as monotone integrated large-eddy
simulation (MILES) techniques and have been shown to be effective in the solution
of flows with shocks and discontinuities such as RT and Richtmeyer–Meshkov
instabilities (Youngs 2003). In § 5, we investigate the role of this effective viscosity in
the present numerical solution method, in the context of the MILES approach.

3. Problem set-up
Figure 2 is a schematic of our computational domain. The dimensions of the three-

dimensional box are 1 cm × 1 cm × 2 cm in the x-, y- and z-directions, respectively
(where z- is the direction of gravity). The interface between the heavy (ρ2) and
light (ρ1) fluids is at z =0. The densities were chosen to be ρ1 = 1 and ρ2 = 3 g cm−3

(A= 0.5), while the acceleration due to gravity gz was set to be 0.3183 cm s−2. The box
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is 0.9375 cm in the positive z-direction and 1.0625 cm in the negative z-direction to
account for the slightly different growth rates of bubbles and spikes at this Atwood
number. Perturbations (h0(x, y)) are imposed at the interface (z = 0) as fluctuations
of a constant density surface. These are then converted to volume fraction fluctuations
using, f1(x, y) = 1 + h0(x, y)/∆ for h0 < 0, and f1(x, y) = h0(x, y)/∆ for h0 > 0, where
∆ is the zone width. The pressure is initialized to the hydrostatic value in this incom-
pressible problem using p(z) = −

∫
ρg dz, where ρ = f1ρ1 + f2ρ2 is the unperturbed

initial density field. This is an important initial condition to set, because without it
the algorithm will seek to establish the hydrostatic condition on the first time step,
involving hundreds, if not thousands, of iterations for the pressure correction calcula-
tion. If an initial hydrostatic pressure field is provided, only three or four iterations are
required on the first time step for pressure convergence. Periodic boundary conditions
were used in the x- and y-directions, while zero-flux conditions were imposed in the
z-direction. All the simulations reported here used a resolution of 128 × 128 × 256
grid points in the x-, y- and z-directions, respectively. The calculations were stopped
when the bubble height reached ∼ 0.8 cm to avoid boundary effects. Bubble and
spike amplitudes (defined below) were written out at each time step, while three-
dimensional data files containing the volume fractions and velocities were written
for Agt2 = 1, 2, 3 . . . The simulations were executed on a SGI Origin 3000 machine
at Texas A&M University. The run-times averaged around 800 CPU hours per
calculation. Each of these simulations required 1 GB of RAM and 6GB of storage.

4. Single-mode dynamics – MILES evaluation
While RTI-3D solves the Euler equations with no explicitly specified viscosity,

numerical diffusion serves to dissipate small scales. Such numerical techniques
(MILES) have been demonstrated to be particularly attractive for flows with shocks
(Richtmeyer–Meshkov) and discontinuities (RT) (Youngs 2003). We model the dis-
sipation with an effective viscosity by calibrating small-amplitude single-mode simula-
tions with linear theory results (Chandrasekhar 1961). The technique is described in
detail in Dimonte et al. (2004), and some essential aspects are reviewed herein. The
single-mode calculations were initialized with perturbations in the x- and y-directions
with a wavelength λ=1 cm and amplitude a0 = 0.001 cm, given by

h0(x, y) = a0

(
cos

(
2πx

λ

)
+ cos

(
2πy

λ

))
. (16)

The density interface at the centreline was converted to fluctuations of volume-fraction
as described in § 3. The calculations were performed at resolutions of λ/∆ =4, 8, 16,
and 32, where ∆ is the zone width. In the presence of viscosity (physical or artificial),
the exponential growth rate Γ of a small-amplitude RT mode k can be approximated
by the following dispersion relation (Robinson & Swegle 1989):

Γ 2 = Akg − 4vk2Γ + 4k4ν2(
√

1 + Γ/k2ν − 1). (17)

The viscosity, ν, is inferred by using the modified growth rate Γ from the numerical
simulations (Dimonte et al. 2004). Here, Γ is obtained by fitting the observed ampli-
tudes to linear theory (hk(t) = h0kcosh(Γ t)). For the maximum resolution of k∆ = 0.196
(32 zones/λ), it was found that (Dimonte et al. 2004) the growth rate approaches the
inviscid value (i.e. Γ/

√
Akg ∼ 1). At a resolution of 4 zones/λ, Γ is only ∼ 65 % of the

inviscid value. From our results, we concluded that to resolve an RT mode completely,
at least 8 nodes are required. As we will see in § 5, the implication of a numerical
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Simulation Spectral index (S.I.) Nmin k〈h0k〉

1 −2 1 1.1 × 10−6

2 −2 1 1.1 × 10−5

3 −2 1 1.1 × 10−4

4 −2 1 0.0011
5 −2 1 0.0044
6 −2 1 0.011
7 −2 1 0.044
8 −2 2 3.0 × 10−6

9 −2 2 0.0003
10 −2 2 0.0044
11 −2 3 4.0 × 10−5

12 −2 3 0.004
13 −2 3 0.04
14 −1 2 0.0045∗

15 0 2 0.004∗

16 16 4.7 × 10−6∗

17 16 4.7 × 10−4∗

18 16 0.047∗

Table 1. List of simulations.

viscosity for multi-mode simulations is similar to that of a physical viscosity, as it
sets an upper bound for the fastest growing modes. Smaller wavelengths, present in
the initial conditions, or generated through nonlinear interactions (mode-coupling),
are smeared out by the numerical viscosity. A similar analysis was performed for
the nonlinear phase of single-wavelength bubble evolution. The k∆ =0.196 case gave
a Froude number of ∼ 0.6 (obtained by tracking the bubbletip), which is in good
agreement with the value of 0.56 for a square periodic lattice of bubbles (Li, Jin &
Glimm 1996). Since bubble velocities converged faster in the nonlinear stage, the
more stringent resolution criterion of 8 zones/λ, obtained from the analysis of the
linear stage, was adopted.

5. Multimode calculations
5.1. Initial conditions

Multimode calculations were designed to test the dependence of the growth constant
αb on the initial amplitudes, spectral index, mode-coupling and longest imposed
wavelength. The perturbations h0(x, y) are initialized as a superposition of up to 32
modes, and expressed as

h0(x, y) =
∑
kx ,ky

ak cos(kxx) cos(kyy) + bk cos(kxx) sin(kyy)

+ ck sin(kxx) cos(kyy) + dk sin(kxx) sin(kyy), (18)

where k =
√

k2
x + k2

y . In the above, both the modal amplitudes ak , bk , etc. and the phases

are assigned randomly. Table 1 gives all the calculations. Simulations 1–13 were ini-
tialized with k〈h0k〉 ranging from 1.1 × 10−6 (case 1) to 0.044 (case 13). All these cases
had ak, bk, ck , and dk varying as k−2 to verify (6) and (7), and thus constitute a study
of the initial amplitudes. These calculations had energy in mode numbers (n= kL/2π)
1–32 (for cases 1–7), 2–32 (for cases 8–10), and 3–32 (for cases 11–13). Cases 5, 10 and
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Figure 3. Initial perturbations for simulation 10 in (a) physical, (c) wavenumber space,
and (e) azimuthally averaged in wavenumber space. Initial perturbations for simulation 18 in
(b) physical, (d) wavenumber space, and (f ) azimuthally averaged in wave number space.

12 were initialized with the same amplitudes (k〈h0k〉 = 0.004), but with their smallest
mode numbers varying as Nmin = 1, 2 and 3, respectively, and constitute a study of the
effect of the longest wavelength imposed. Similarly, the role of spectral shapes was
studied by initializing cases 10, 14 and 15 with the same amplitude (k〈h0k〉 =0.0044)
and Nmin (= 2), but spectral indices (SI) of −2, −1 and 0 (white noise), respectively.
Figures 3(a) and 3(c) are the perturbation amplitudes for a typical case (case 10)
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in physical and wavenumber space, respectively. Figure 3(e) is the corresponding
azimuthally averaged Fourier amplitudes revealing the k−2 (dashed line) structure of
the spectra. To test the opposite limit of mode-coupling, the perturbation energy was
confined to an annulus (16 < n < 32) in wavenumber space (see figures 3b and 3d) for
cases 16, 17 and 18, with amplitudes of 4.7 × 10−6, 4.7 × 10−4 and 4.7 × 10−2,
respectively. The azimuthally averaged Fourier amplitudes for case 18 are shown
in figure 3(f ). Most numerical simulations of RT instability (Youngs 1991, 1994,
2003; Cook & Dimotakis 2001; Young et al. 2001) are initialized with similar annular
distributions. It is expected that the mode-coupling cases will produce a much lower
growth rate than the simulations initialized with the longer modes (Dimonte et al.
2004), because the long wavelengths dominate the flow at late time. It must also be
noted that most experiments have long-wavelength content in their initial conditions
(Dimonte & Schneider 2000; Ramaprabhu & Andrews 2004), which could explain
the higher values of α typically reported from such studies. The following is a quick
reference for all cases reported in this work:

(a) Initial amplitude study: cases 1–13.
(b) Spectral Index study: cases 10, 14 and 15.
(c) Mode coupling study: cases 16–18.
(d) Longest wavelength study: cases 5, 10 and 12.

We now address the issue of the most dominant wavenumber (i.e. having the largest
linear growth rate) in the presence of numerical viscosity in these simulations.
Numerical viscosity (like other stabilizing mechanisms, such as surface tension) places
an upper bound on the fastest growing wavenumber. Setting ∂Γ/∂k = 0 in (17), the
peak growth rate ∼ 0.4(g2/ν)1/3 (Miles & Dienes 1966; Robinson & Swegle 1989)
occurs at the wavenumber

kp ≈ 0.5

(
Ag

ν2

)1/3

. (19)

For the current simulations, the fastest growing mode number was determined to
be Np ∼ 24 (Dimonte et al. 2004), and within the present range of modes imposed
in the initial conditions. This guarantees that the linear growth stage is reproduced
accurately by these calculations.

Figure 4(a) shows the evolution of the bubble and spike amplitudes (hb and hs)
as a function of the self-similar length Agt2 (cm) for case 10. The bubble and spike
amplitudes are defined as the z-location where the average value (over the (x, y)-
plane) of f1 reaches 1 % and 99 %, respectively. We assume that nonlinearity sets in
when the most dominant wavelength λp = 2π/kp saturates. The time at which this
transition occurs may be determined by equating the linear and nonlinear velocities
of a mode evaluated at a transition time tk , using the so-called Fermi transition (see
Appendix), giving

tk = (Akpg)−1/2 cosh−1

(
2C

√
π

k〈h0k〉

)
. (20)

For the parameters used here, the transition occurs at Agt2 ∼ 0.604 for case 10. Table 2
gives the transition times from all the simulations. The statistics for each case were
determined after the nonlinear transition had set in. One concern when computing αb

and βb was that it had to be done in a time window after the nonlinear transition, but
before the emergence through mode-coupling of longer wavelengths not originally
imposed. The time tmc at which wavelengths due to mode-coupling are longer than
the longest wavelength present in the initial conditions is determined as follows. From
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Figure 4. Evolution of bubble and spike amplitudes (hb and hs), and integral
width W for (a) case 10 (Nmin = 2) and (b) case 1 (Nmin = 1).

Simulation Transition time Mode-coupling
Agt2

k onset time, Atgt2
mc

1 3.52 −
2 2.44 −
3 1.55 −
4 0.87 −
5 0.55 −
6 0.41 −
7 0.18 −
8 2.89 33
9 1.25 20

10 0.60 15
11 1.81 18
12 0.58 8
13 0.22 6
14 1.15 18
15 0.62 16
16 3.70 −
17 1.14 −
18 0.23 −

Table 2. The nonlinear transition time tk for the 17 simulations.

the estimated width of the wavepacket δk = ± 3kp/8 (see Appendix), where kp is the
dominant mode at any given time, we determined the longest wavelength in the
computational domain to be

kmin = kp − 3
8
kp. (21)

Thus, when kp is the dominant mode, kmin has just saturated. When kmin is less than
the lowest mode number imposed in the initial conditions, mode-coupling effects
are said to be significant. For example, for simulation 1 this would occur when nmin

dropped below a value of 3. Thus, the cutoff time is chosen as the value of t , when
kp = 8kmin/5. The dominant mode kp at any time is determined from the bubblefront
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(a) (b) (c)

z > hb

z < 0.75 hb

Figure 5. Bubble fronts Zb(x, y) from simulation 10 at early-, mid- and late times
((a) Agt2 = 2, (b) 8 and (c) 16).

image by an autocorrelation procedure described below. The values of αb and βb,
and other quantities, are then obtained by averaging for tk � t � tmc. Table 2 also the
mode-coupling transition times from the calculation. For the simulations initialized
with Nmin = 1, the transition to pure mode-coupling dominance never occurs. For
cases with low-amplitude initial perturbations, the products of mode-coupling may
play a greater role in the dynamics owing to their increased relative significance.
This is discussed in detail in § 5. Thus, it is challenging to completely isolate the
contributions of mode-coupling and long-wavelength saturation in such studies.

The ratio hs/hb ∼ 1.25 observed in figure 4(a) at late time is consistent with experi-
mental observations for A ∼ 0.5 (Dimonte & Schneider 2000). (Their power-law depen-
dence for the ratio of spike to bubble amplitudes

hs

hb

=

(
ρ2

ρ1

)0.33

, (22)

gives a value of ∼ 1.4 at these density ratios). We also plot the integral mix width
defined as (Andrews & Spalding 1990)

W =

∫
〈f1〉〈f2〉 dz. (23)

For small Atwood numbers hb ∼ hs , assuming a linear profile for the volume fractions,
h ∼ 3W consistent with figure 4(a) (h ∼ 3.2W if the effects of numerical diffusion are
considered – Youngs 2003) – Andrews & Spalding (1990) use a multiplicative factor
of 6 in (23) to relate W directly to the total mix width. It is not clear why a second
transition in the hb and hs time traces is observed around Agt2 ∼ 5. We initially
suspected this behaviour might be due to the lack of sufficient bubbles/spikes required
for convergent statistics. To resolve this, hs and hb were also computed from the x-
intercept of a linear fit to the volume fraction profiles (see Youngs 1989; Schneider,
Dimonte & Remington 1998). Since this method (which is less susceptible to statistical
fluctuations) yielded the same αb (within ± 10 %) as the plots in figure 4(a), the 1 %
and 99 % thresholds have been used throughout this paper. Another possible reason
for the transition might be the emergence of products of mode-coupling around
that time. Indeed, no such transition is observed for cases initialized with Nmin =1
(figure 4b), since the mode-coupling products in these cases never exceed Nmin = 1.
Thus, for cases with Nmin = 2, 3, the bubble statistics were computed for tk < t < tmc.

Figure 5 shows the bubblefronts Zb(x, y) (defined as iso-surfaces of f1 = 0.01)
at three stages of the RT evolution (Agt2 = 2, 8 and 16) for case 10. Only the
bubblefronts with Zb > 0.75hb (i.e. the leading bubbles) are visualized in figure 5.
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Figure 6. Azimuthally averaged power spectra of bubble fronts Zb(x, y) from simulation
10 at early-, mid- and late times (Agt2 = 2, 8 and 16).

There are ∼ 120 bubbles at Agt2 = 2, that coalesce to ∼ 9 large bubbles by the end
of the calculation. This corresponds to about log2(120/9) ∼ 3.7 generations of bubble
evolution. It is evident that even at Agt2 = 16, the bubbles do not approach the box
dimension L = 1 cm. Thus, we may assume that the flow is not affected by the bounda-
ries throughout the calculation. The radial autospectra EZb(k) of the bubble front
function Zb (x, y) is defined to ensure∫ ∞

0

Ezb(k) dk =
〈
Z2

b

〉
− 〈Zb〉2, (24)

where 〈•〉 denotes averaging over the (x, y)-plane. The radial autospectra was obtained
by azimuthally averaging the two-dimensional power spectra of Zb(x, y) rotated
through 30 angles. The results are plotted in figure 6 for Agt2 = 2, 8 and 16. There is
no dissipative range in these spectra owing to the absence of small-scale information
in the definition of Zb(x, y). Consistent with the emergence of large-scale structures at
late-time, the spectral peak shows movement towards lower mode numbers. However,
at Agt2 ∼ 2, the spectral peak is at N ∼ 4, which is higher than the imposed value of
Nmin = 2 for this case. We attribute this to wavenumber modulation effects owing
to the presence of different size bubbles. To determine quantities, such as the
Froude number and the self-similar parameter βb, it is necessary to estimate the
diameters of the dominant RT bubbles without such modulation effects. Thus, we use
an autocorrelation-based technique (developed in Dimonte et al. (2004) and briefly
reviewed next) to determine the average bubble diameters at different Agt2.

The two-dimensional non-dimensional, autocorrelation function η(x, y) of the
bubble front Zb(x, y) is defined as

η(x, y) =

∑
(Zb(x

′, y ′) − 〈Zb〉)(Zb(x
′ + x, y ′ + y) − 〈Zb〉)∑

(Zb(x
′, y ′) − 〈Zb〉2)

, (25)
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Figure 7. (a) Test image of radius 20 pixels with a parabolic (b) intensity profile. I0 is the
peak intensity value at the centre of the image.
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Figure 8. (a) Autocorrelation contours of test image from 6 (a) and the azimuthally
averaged radial profile (b) showing a radius of ∼ 20 pixels.

where the summations are over 0 � x ′, y ′ � L. The azimuthal average 〈η〉θ is obtained
by averaging η(x, y) rotated through 24 angles. This technique was applied to test
images with objects of known diameters, and it was found that the radial location
where 〈η〉θ dropped to a value of 0.3 corresponded to the mean radius of the
test objects. Figures 7(a) and 7(b) show a typical test object and the radial profile
of intensity (along the dashed line), respectively. A parabolic intensity profile was
chosen for the test image, to match the observed profiles of the bubble fronts. The
corresponding autocorrelation function η(x, y) and its azimuthal average 〈η〉θ are
shown in figures 8(a) and 8(b), respectively. The threshold value of 0.3 accurately
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Figure 10. (a) Autocorrelation contours of the bubblefront field from simulation 18 and
the azimuthally averaged radial profile (b).

captures the radius of the test object (∼ 20 pixels). This procedure was repeated
with test objects of different diameters and with multiple objects in a single frame.
The error using this technique for these cases was determined to be ∼ ± 15 %. The
robustness of this technique was confirmed by including multiple objects in a single
frame, and with different intensity profiles. A sample image of the bubblefront from
the mode-coupling case 18 at Agt2 = 22, is shown in figure 9. The results of the
autocorrelation technique applied to this image are plotted in figures 10(a) and 10(b)
as the η(x, y) contours and the radial profile of 〈η〉θ , respectively. Applying the 0.3
cutoff, we determine the average bubble diameter Db for this image to be ∼ 0.38 cm.
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Figure 11. Vertical slice of density contours from simulation 10 at Agt2 = 17. The average
bubble density and velocities are computed within the volume enclosed by the leading bubble
tip and the dashed line.

The Froude number, Fr0, defined based on the bubble diameter and the associated
bubble velocity vb is

Fr0 =
vb√

ρ2 − ρ1

ρ2

gD2

2

. (26)

This definition does not take into account the dilution of bubbles through the
entrainment of heavy fluid and subsequent physical (and numerical) diffusion. This
process increases the effective density of the bubbles, and it should be accounted for
in calculating the Froude number (see Dimonte et al. 2004). The effect of entrainment
is evident in the vertical slice of density contours from simulation 10 at Agt2 = 17
(figure 11), which shows the leading bubbles as grey rather than black. The effective
bubble density ρb may then be obtained by averaging the density within a volume
defined as the region bounded by max (Zb(x, y)) and the dominant bubble radius
Db/2 (in figure 11, this is approximately the region between the leading bubble tip
and the dashed line). The bubble velocity is similarly obtained by volume-averaging
the vertical velocities in this region, which takes into account the velocity of heavier
fluid trapped within and co-moving with the bubble. The Froude-number definition
from (26) should then be modified as

Freff =
vb√

ρ2 − ρb

ρ2

gDb

2

, (27)
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Figure 12. Histogram of Froude numbers from the 18 simulations.

where ρ1 <ρb < ρ2. For the density field shown in figure 11, ρb = 2.69 g cm−3,
vb =0.049 cm s−1, Fr0 = 0.29 and Freff =0.79. The values of Fr0 and Freff from all
the simulations were 0.43 ± 0.12 and 1.04 ± 0.26, respectively. We use the effective
Froude number Freff in the verification of (6) and (7). Figure 12 shows a histogram
of Froude numbers from all the simulations obtained from (26) and (27). Scorer
(1957) accounted for entrainment in buoyant thermals and obtained 1.2, which is in
reasonable agreement with the values of the effective Froude number reported here.
Dimonte & Schneider (2000) report ∼ 0.9 from their linear electric motor (LEM)
experiments, while Glimm & Li (1988), in their analysis of the rocket rig experiments
of Read (1984), obtain a value of 1.1. However, these experimental values were
obtained without considering entrainment and numerical diffusion. Davies & Taylor
(1950) experimentally obtained Fr ∼ 0.66 for a lenticular bubble in an open bath.

For A= 1, a periodic array of RT bubbles has been shown to have a Froude
number of ∼ 0.56 from potential flow analysis by Layzer (1955). Gonchorov (2002)
and Alon et al. (1995) extend Layzer’s analysis to A< 1, and they determine the
bubble velocity as a function of A:

vb = 0.58

√
2A

1 + A
g
λb

2
. (28)

This is equivalent to (26), if we take Db ∼ λb, and Fr ∼ 0.58. Sohn (2003) alternatively
obtained from his potential flow model,

vb = C

√
Agλb

2
, (29)
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which is consistent with (26) if we use Daly’s parameterization (Daly 1967) to relate
bubble wavelength to diameter

λb = Db

ρ1 + ρ2

ρ2

. (30)

Equation (30) accounts for the different behaviours of bubbles and spikes at different
Atwood numbers. For large A, the spikes are narrow and in free fall, giving Db � Ds ,
and λb ∼ Db. RT flows are symmetric at low Atwood numbers, and (30) accordingly
gives Db ∼ Ds and λb ∼ 2Db. However, an analysis of several three-dimensional numer-
ical simulations (Dimonte 2004) shows better agreement with the scaling suggested
by (28). Pending further investigation of the dependence of bubble wavelength λb

on diameter Db at different A, we use C defined according to (9) to accommodate
ambiguities in the bubble wavelength–diameter relation.

Experimental values of Fr for a chaotic bubblefront are believed to be higher than
the value obtained from the potential flow models, because RT bubbles probably be-
have like isolated thermals in an infinite bath rather than structures in a tightly bound
periodic lattice. This is because a bubble in an initially periodic lattice that is locally
perturbed forward would shoot past its neighbours owing to the reduced counterflow
drag experienced by it (from continuity, the spike flow velocity surrounding the bubble
would be reduced owing to the increased area). Such an isolated leading bubble could
grow self-similarly, with Db ∼ hb. Thus, RT bubbles more likely resemble the buoyant
thermals in Scorer’s experiment. Glimm et al. (1990) invoke an envelope instability of
the chaotic bubblefront to explain the observed higher Fr numbers. In their model,
the bubble velocity is given by the superposition of the bubblefront velocity and
a velocity proportional to the modulation wavelength. We believe that numerical
simulations of isolated bubbles can resolve these issues.

Entrainment and fine-scale mixing (triggered by numerical diffusion in MILES) may
also lead to a reduction in the numerically obtained values of αb. For instance, we
can account for numerical diffusion by using the effective Froude number in vb =
Freff

√
(δρ/ρ2)(gDb/2), where δρ = ρ2 − ρ1, and combining with (4) to give

αb =
Fr2

eff

8

Db

hb

ρ1 + ρ2

ρ2

. (31)

When bubble densification due to entrainment is considered, (31) produces higher
values of αb ∼ 0.07, which is in better agreement with experimental values. Simulations
that actively track the interface thus suppressing numerical diffusion (front tracking
schemes; see Glimm et al. 2001; George et al. 2002) indeed produce such higher values
for αb (0.05 − 0.08). At late time, however, these simulations also report a reduction
in the value of αb because bubbles entrain and trap heavier fluid within them thus
reducing their effective buoyancy. In this paper, we suggest an alternative explanation
for the discrepancies in the value of αb from experiments and numerical simulations –
the absence of long wavelengths in simulations.

5.2. Effect of initial amplitudes

5.2.1. Large-scale effects

Cases 1 to 13 constitute a study of the effect of initial amplitudes on self-similar
parameters αb and βb. All these cases had an initial spectrum hk ∼ k−2, while the
minimum imposed modes ranged from Nmin = 1 in some cases to Nmin = 3 in others.
To isolate the effect of initial amplitudes, figure 13(a) shows the evolution of bubble
amplitudes for cases 1, 3 and 6, all of which had the same values of Nmin = 1.
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Figure 13. Effect of k〈hk0〉: (a) Evolution of bubble amplitude, hb for cases 1, 3 and 6
(Nmin = 1; k〈hk0〉 = 1.1 × 10−6, 1.1 × 10−4 and 0.011). (b) Evolution of bubble amplitude, hb for
mode-coupling cases 16, 17 and 18 (k〈hk0〉 = 4.7 × 10−6, 4.7 × 10−4 and 0.047).

Simulation αb βb Effective Fr number Θ K.E./	P.E.

1 0.025 0.53 ± 0.08 0.91 ± 0.24 0.76 ± 0.07 0.37 ± 0.07
2 0.024 0.44 ± 0.09 1.14 ± 0.13 0.81 ± 0.07 0.37 ± 0.07
3 0.032 0.41 ± 0.12 1.16 ± 0.19 0.79 ± 0.06 0.38 ± 0.09
4 0.046 0.51 ± 0.06 1.16 ± 0.14 0.73 ± 0.09 0.45 ± 0.07
5 0.048 0.62 ± 0.28 0.91 ± 0.18 0.68 ± 0.07 0.60 ± 0.06
6 0.084 0.73 ± 0.08 1.04 ± 0.20 0.63 ± 0.07 0.58 ± 0.06
7 0.087 0.57 ± 0.1 1.01 ± 0.08 0.68 ± 0.07 0.72 ± 0.07
8 0.021 0.53 ± 0.1 1.05 ± 0.20 0.78 ± 0.05 0.37 ± 0.09
9 0.035 0.45 ± 0.06 1.16 ± 0.17 0.80 ± 0.06 0.46 ± 0.08

10 0.045 0.53 ± 0.12 1.02 ± 0.13 0.75 ± 0.09 0.47 ± 0.09
11 0.028 0.40 ± 0.12 1.47 ± 0.41 0.81 ± 0.05 0.37 ± 0.03
12 0.057 0.64 ± 0.09 0.94 ± 0.18 0.72 ± 0.12 0.50 ± 0.13
13 0.083 0.54 ± 0.09 1.07 ± 0.09 0.70 ± 0.09 0.54 ± 0.15
14 0.037 0.45 ± 0.03 1.12 ± 0.09 0.82 ± 0.1 0.36 ± 0.04
15 0.036 0.43 ± 0.05 1.09 ± 0.12 0.75 ± 0.09 0.38 ± 0.04
16 0.023 0.51 ± 0.10 1.08 ± 0.17 0.72 ± 0.09 0.43 ± 0.15
17 0.026 0.44 ± 0.05 0.94 ± 0.11 0.81 ± 0.06 0.36 ± 0.04
18 0.028 0.47 ± 0.09 1.13 ± 0.18 0.82 ± 0.03 0.38 ± 0.05

Table 3. Summary of results from the simulations.

Simulation 6 with k〈h0k〉 = 0.011 grew the fastest, while the bubble amplitude from
simulation 1 with k〈h0k〉 =1.1 × 10−6 took up to Agt2 ∼ 30 cm to reach 0.75 cm. It is
clear from the slope of these curves that the self-similar growth for these simulations
is affected by the initial amplitudes. The growth parameter αb was determined as the
derivative of hb with respect to Agt2 over the time window tk � t � tmc, and is listed for
all the cases in table 3. Simulations 16, 17 and 18 were designed to test the effect of
the initial amplitudes on αb and βb in the mode-coupling limit. All three calculations
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Figure 14. Comparison of αb from the model and NS. Open circles show insensitivity of the
mode-coupling cases to the initial amplitudes.

had energy confined to modes 16–32. The values of k〈h0k〉 were 4.7 × 10−6, 4.7 × 10−4

and 0.047 for cases 16, 17 and 18, respectively (note that for these cases, k〈h0k〉
is not constant since a k−2 spectrum was not used; the value reported here was
computed for kp = 2π/λp). Figure 13(b) shows the time traces of bubble amplitude for
the mode-coupling simulations. Although all three cases saturate at different times
owing to different initial amplitudes, they appear to have the same slope during their
self-similar evolution. Inspection of table 3, shows that αb is insensitive to k〈h0k〉 when
the large scales are generated purely by mode coupling. Furthermore, αb takes up
a lower-bound and universal value of 0.02–0.03 for the mode-coupling simulations
(within the error bounds reported here).

These results are summarized in figure 14 by plotting αb vs. k〈h0k〉 for all of the
simulations in the initial amplitude study. The closed symbols represent cases 1–13,
where long wavelengths were present in the initial spectrum and show good agreement
with the model, while the open circles refer to the mode-coupling calculations. The
data lie between the lines for Dimonte’s model with C = 0.56 and 0.95. The value
of C < 0.95 implied by figure 14 could be the result of numerical diffusion, which
causes the densification of bubbles and reduces their growth rate. We discuss below
a correction to αb that accounts for numerical diffusion, giving as a result higher
values for C. The growth rate obtained from the LEM experiment (Dimonte &
Schneider 1996, 2000) at an estimated amplitude of k〈h0k〉 =4 10−4 is also shown in
figure 14. This datapoint falls on the C = 0.95 line, possibly because the experiments
used immiscible fluids and had less diffusion than the simulations reported here.

The bubble wavelengths λb, calculated from Db using (30), are shown in figure 15(a)
as a function of the parameter Agt2. It is clear that even at late times, λb does not
exceed 0.5 (Nmin = 2), which is the threshold for the onset of mode coupling for these
cases. The self-similar parameter βb = λb/hb is plotted in figure 15(b) and shows a
near-constant value of ∼ 0.4 for t > tk . Indeed, βb appears less sensitive to the initial
amplitudes than αb. The linear growth of λb and the constancy of βb shows that
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Figure 15. Effect of k〈hk0〉: (a) Evolution of bubble wavelength, λb for cases 1, 3, and 6
(Nmin = 1; k〈hk0〉 = 1.1 × 10−6, 1.1 × 10−4, and 0.011) scaled to λp . (b) Evolution of βb for cases
1, 3, and 6.
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Figure 16. Comparison of βb from the model and Navier–Stokes. Open circles show
insensitivity of the mode-coupling cases to the initial amplitudes.

these calculations have reached and maintain self-similarity. The mean βb for all the
simulations were obtained by averaging for tk < t < tmc and are given in table 3.

Figure 16 shows βb as a function of k〈h0k〉 for the 13 cases that constitute the initial
amplitude study and the three mode-coupling cases. (The diameter to amplitude ratio
Db/hb can be obtained from figure 16 by multiplying by (1 + A)/2, giving an average
value of 0.3. Analysis of laser induced fluorescence images of LEM experiments yield
a value of ∼ 0.38, Dimonte & Schneider 2000). The simulation points in figure 16
show that βb is weakly sensitive to k〈h0k〉 compared to the model. In general, the βb

values appear to agree with the C = 0.95 line (and the LEM datapoint) except at very
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Figure 17. Bubblefront images from simulations 1(a) and 6(b). These simulations had
k〈h0k〉 = 1.1 × 10−6 and 0.011, respectively. The bubblefronts are realized at times when both
simulations had the same bubble amplitude hb .

low and very high amplitudes. The disagreement at high k〈h0k〉 (� 0.01) could be due
to the initial perturbations approaching their nonlinear saturation limit. Note that αb

also saturates for k〈h0k〉 � 0.01, in contrast with the model.
One reason for the reduced sensitivity of βb at low amplitudes may be mode-

coupling effects. Although these calculations were initialized with k−2 spectra, mode-
coupling may also be present and contribute to the dynamics at late time. Haan (1991)
and Dimonte (2004) suggest adding the mode-coupling contributions in quadrature
to the long-wavelength amplitudes already present in the initial conditions (ambient
modes). If the amplitudes of the ambient modes are low, the relative significance of the
mode-coupling products increases. Consequently, αb and βb may become less sensitive
to k〈h0k〉 at small amplitudes. This is seen in the βb behaviour and, to a smaller extent,
in figure 14 for αb. There appears to be a transition point at k〈h0k〉 ∼ 3 × 10−4, below
which mode-coupling desensitizes βb. A similar transition occurs at k〈h0k〉 ∼ 3 × 10−4

for the molecular mix fraction, bubble density and the kinetic energy dissipation (§ 5.2).
Furthermore, it is possible that mode-coupling has a greater effect on βb than on αb.
For instance, the merger of two bubbles of nearly equal diameter would increase βb by
21/3, but the corresponding terminal velocity would be higher by only 21/6. Of course, in
addition to the terminal velocity, αb also depends on the length of time 	t over which
the merger takes place, i.e. the merger rate. (Cheng, Glimm & Sharp (2002) from their
analysis of images from the rocket rig experiment, report the distribution of bubble
diameters and their positions, and infer a bubble merger rate from applying single-
mode dynamics to the bubble envelope.) Three-dimensional simulations initialized
with two different wavelengths may clarify the bubble merger process in detail. Note
that in the experiments, both mode-coupling and long-wavelength saturation are
present simultaneously, and further studies quantifying the relative importance of
each are required to resolve these issues.

Finally, to ensure that the βb behaviour observed here is not an artefact of the
autocorrelation procedure used, we show in figures 17(a) and 17(b) two realizations
of the bubblefronts from simulations 1 and 6. The bubblefronts were realized at
times such that the simulations had the same bubble amplitude of hb ∼ 0.5 cm.
For simulation 1 (k〈h0k〉 = 1.1 × 10−6) this was at Agt2 ∼ 20, while for simulation 6
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Figure 18. Effect of k〈hk0〉: (a) Evolution of global molecular mix fraction Θ for cases 1,
3 and 6 (Nmin = 1; k〈hk0〉 = 1.1 × 106, 1.1 × 10−4 and 0.011). (b) Evolution of K.E./	P.E. for
cases 1, 3 and 6.

(k〈h0k〉 = 0.011) the bubblefronts were extracted at Agt2 ∼ 6. From a visual inspection
of figure 17, both images show leading bubbles of roughly the same diameter (and
hence the same βb since the amplitudes are the same) consistent with the results of
the autocorrelation analysis. We conclude that while it is possible that βb is truly
insensitive to k〈h0k〉 in disagreement with the model, the sensitivity of this parameter
may also be muted owing to other factors such as mode-coupling.

5.2.2. Small scale-effects

In addition to large-scale effects incorporated in αb and βb, small-scale effects such
as the global molecular mix parameter Θ were also investigated. Values for Θ were
computed from volume fraction profiles as

Θ =

∫
〈f1f2〉dz∫
〈f1f2〉dz

(32)

where 〈•〉 once again denotes averaging over the (x, y)-plane. Θ approaches 1 for
completely mixed fluids, and 0 for immiscible fluids (Dankwerts 1952). Thus, Θ

characterizes the extent of molecular mixing. The evolution of Θ with Agt2 is shown
in figure 18(a) for cases 1, 3 and 6. For all these cases, Θ asymptotes to ∼ 0.8 consistent
with experiments (Wilson & Andrews 2002; Ramaprabhu & Andrews 2004), although
at slightly different rates. The simulations and experiments of Dalziel et al. (1999) also
report a Θ value that asymptotically approaches 0.8. Thus, even with a higher level
of diffusion, MILES produces the same level of molecular mixing as the experiments
and high-resolution DNS. The high-resolution MILES study of Youngs (2003) gives
a value of 0.81 for Θ in the self-similar stage. The nonlinear coupling of wavelengths
can yield both low- and high-wavenumber products. If the daughter products have
wavelengths smaller than the zone size employed in these simulations, this leads to the
augmentation of the numerical viscosity and greater molecular mixing. Furthermore,
Θ appears weakly sensitive to k〈h0k〉 (figure 19). The large-amplitude cases (with
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Figure 19. Global molecular mix fraction Θ vs. k〈hk0〉.

Nmin =1) register a slightly lower value, approaching 0.6. This could be due to large-
scale vortical motion that transports unmixed lighter fluid into regions of heavier
fluid and vice versa (i.e. entrainment without molecular mixing). The simulations
by Youngs (2003) in which long wavelengths were included also exhibit reduced
molecular mixing (Θ ∼ 0.68 − 0.74).

Ramaprabhu & Andrews (2004) suggest that in the presence of molecular mixing,
αb is modified as,

α̃ = α
√

1 − Θ. (33)

For Θ ∼ 0.8, (33) implies a halving of the growth rate owing to molecular mixing. This
could reconcile the values of αb obtained from MILES and front-tracking simulations,
which actively suppress molecular mixing (front-tracking simulations give αb ∼ 0.07,
while LES and DNS give ∼ 0.02 − 0.03 for the mode-coupling cases). George et al.
(2002) apply a correction to the Atwood number to account for numerical diffusion,
raising their α-value from 0.035 to 0.06 in their TVD simulations. Also, if a correction
such as (33) is applied, the αb values in figure 14 would suggest higher values for
Fr closer to experimental values. The reduction of αb suggested by (33) is an upper
bound, because Θ is a global parameter defined for both bubbles and spikes. If we
consider (33) for leading bubbles, α̃ ≈ 0.7α for miscible experiments.

The self-similar evolution of RT instabilities involves the conversion of initially
available potential energy (P.E.) to kinetic energy (K.E) as the flow develops. The
ratio of the kinetic energy of the flow to the accompanying loss in potential energy
is nearly constant for such flows (Youngs 1994). We use the approach outlined in
Dimonte et al. (2004) to define this ratio: assuming for low A, a linear profile of the
volume fractions, and hs ∼ hb =h, the loss in potential energy may be written as

	P.E. =

∫ 0

−h

(ρ1 − 〈ρ〉)gz dz +

∫ h

0

(〈ρ〉 − ρ1)gz dz ≈ (ρ2 − ρ1)gh2

6
. (34)
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Figure 20. (a) Kinetic energy as a fraction of potential energy released vs. k〈h0k〉.
(b) Correlation between K.E./	P.E. and αb . The solid line represents K.E./	P.E. = 11.9αb .

In the above, the error in assuming hs ∼ hb results in an overall error in 	P.E. of
± 5 % for these calculations. The corresponding gain in kinetic energy is then,

K.E. = 1
2

∫
ρ(v · v) dx dy dz, (35)

where the integral is performed over the entire computational domain. The ratio
K.E./	P.E. is plotted for cases 1, 3 and 6 in figure 18(b). The fraction of energy
dissipated is given by 1 − K.E./	P.E., and approaches a value slightly greater than
50 % for these simulations. This is in good agreement with the experiments of
Ramaprabhu & Andrews (2004), who report a value of D/	P.E.= 49 % from their
simultaneous measurements of density and velocity fields. Figure 20(a) is a plot of
K.E./	P.E. from all the simulations, and shows a slight increase with k〈h0k〉. Dimonte
et al. (2004) argue that the ratio K.E./	P.E. bears a strong correlation with αb for
the leading bubbles. In the limit of small density differences, they obtain

K.E./	P.E. ∼ 20αb. (36)

K.E./	P.E. from the current simulations are plotted as a function of αb in figure 20(b),
giving K.E./	P.E. ∼ 12αb, slightly different from (36) probably due to the finite
Atwood number employed in this work. The bubble density ρb, defined earlier in
this section, is shown as a function of k〈h0k〉 in figure 21. The molecular mix
fraction, kinetic energy dissipation, and the bubble density all undergo a transition at
k〈h0k〉 ∼ 3 × 10−4, below which they remain nearly constant, while varying with k〈h0k〉
at higher amplitudes.

The ratio of the horizontal to the vertical components of kinetic energies,

X =
(K.E.x + K.E.y)

K.E.z
(37)

from these simulations was determined to be ∼ 0.64. In comparison, the LES of
Youngs (1994) gives a value of ∼ 0.48 for K.E./	P.E. and ∼ 0.7 for the ratio of
kinetic energy components. These values are slightly lower than the experimentally
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Figure 21. Variation of bubble density ρb with k〈hk0〉.

observed values of 0.78 for X inferred from a velocity ratio of ∼ 1.6 obtained
from particle image velocimetry measurements (Ramaprabhu & Andrews 2004). The
values of mixing parameter Θ and K.E./	P.E. are summarized in table 3. Simulation
6, which is the most efficient in extracting kinetic energy from the initial density
distribution (K.E./	P.E. ∼ 0.6), also has the lowest value for the mixing parameter Θ .
This simulation had Nmin = 1, and the highest growth rate (αb ∼ 0.08), which implies
the appearance of large-scale structures at early times. Thus, the rate of extraction of
potential energy was much higher for this case. A detailed discussion of the effect of
the minimum mode is deferred until § 5.4. In summary, while αb appears sensitive to
initial conditions, βb, the molecular mixing parameter Θ , and K.E./	P.E. all seem to
have little memory of the initial spectral content. These findings are further supported
by density spectra, which are presented later in this section.

5.3. Effect of spectral index

Cases 10, 14 and 15 had the same k〈h0k〉 =0.0044 and Nmin = 2, but spectral indices
of p = − 2, 0 (white noise) and −1, respectively. For p = − 1 and p = 0, k〈h0k〉 varies
with k (from the definition of 〈h0k〉) and a value based on the dominant wavenumber
kp = 2π/λp was used. From the time traces of hb, it was observed that the p =0
case grew the fastest initially because the high-wavenumbers of the flat white noise
spectrum have a higher energy. However, the growth is slowed down at late times,
when the low-amplitude low wavenumbers of this spectrum were sampled by the flow.
The corresponding bubble parameters αb and βb are plotted in figures 22(a) and 22(b),
respectively, and show little sensitivity to p.

5.4. Effect of longest wavelength imposed

Cook & Dimotakis (2001) obtained different growth rates for simulations initialized
with different peak wavenumbers. They used spectra with peaks centred at mode
numbers of 4, 9 and 12, and found that αb decreased slightly with increasing Nmin.
However, these cases probably evolved through mode-coupling, thus reducing the
sensitivity of αb to Nmin. In addition, for their cases initialized with Nmin = 4 and
Nmin =9, self-similarity was not achieved. In our study, cases 5, 10 and 12 had spectral
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peaks at mode numbers 1, 2 and 3, respectively, (thus reducing the mode-coupling
contribution), and all had the same amplitude k〈h0k〉 =0.004. Figures 23(a) and 23(b)
are plots of αb and βb for various values of Nmin. Although both parameters vary
slightly with the minimum mode number, there appears to be no clear trend. As found
previously for the initial amplitude and mode-coupling cases, the global molecular
mix fraction Θ and the kinetic energy dissipation showed little dependence on the
initial spectral content.

The volume fraction spectra was computed from the (x, y)-distribution of f1 at
z = 0 using (Dimonte et al. 2004),

Ef 1(n) = 2πn〈f1(n)2〉θ , (38)
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Figure 24. (a) Contours of volume fraction f1 on a horizontal plane at z = 0 (from case 18).
(b) Azimuthally averaged power spectra of f1 for the two mode-coupling cases 16, 17 and 18.

where 〈•〉θ denotes azimuthal averaging. As before, this definition ensures that∫ ∞
0

Ef1
(k) dk = 〈f 2

1 〉−〈f1〉2. Figure 24(a) is an image of f1(x, y) at z = 0 from simulation

18 at Agt2 = 22, where the large scales are generated purely through mode-coupling.
The corresponding azimuthally averaged spectra for the mode-coupling cases 16, 17
and 18 are shown in figure 24(b). As described earlier, 〈•〉θ was obtained by
azimuthally averaging over 30 angles. The solid line indicates the −5/3 slope and
shows the presence of a short inertial range with k−5/3. The Reynolds number at
Agt2 = 22 may be estimated as

Re =

√
gAt

6

(hb + hs)
3/2

ν
≈ 925, (39)

where ν was determined using the procedure described in § 4. Higher resolution
simulations at higher Reynolds numbers are expected to give a broader inertial range
than observed here. The corresponding Kolmogorov length scale is (Tennekes &
Lumley 1972)

ηk =
hb + hs

2
Re−3/4, (40)

and exceeds the Nyquist cutoff associated with the current resolution at Agt2 ∼ 4.
At higher mode numbers, a dissipative region with a slope of −3 is also evident.
Although the mode-coupling cases differed from each other in their initial amplitudes
by a factor of 100, their late-time spectra have very similar structures, even in the
large-scales, which is consistent with the results of § 5.

The azimuthally averaged power spectra from the initial amplitude study and the
spectral index study are shown in figure 25(a) and 25(b), respectively. Similar to
the mode-coupling cases, these spectra have a short inertial range with E(k) ∼ k−5/3

and a steeper dissipative range. The initial amplitude cases have dissimilar structure
at the lowest wavenumbers, which is consistent with the different values of the
growth constant obtained from these simulations. At the higher wavenumbers, all of
these calculations have nearly identical energies. As we have seen, this similarity is
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Figure 25. Azimuthally averaged power spectra of f1 from (a) the initial amplitude study
and (b) the spectral index study.

manifested in the small-scale quantities such as the molecular mixing parameter and
the kinetic energy dissipation, which show little dependence on the initial conditions.
Consistent with the results discussed in § 5.3, the spectral index cases show good
collapse both at the large and small scales.

6. Summary and conclusions
Using numerical simulations with carefully specified initial conditions, we have

demonstrated that long-wavelength initial amplitudes increase the RT bubble growth
parameter αb to experimentally observed values. There are two limiting scenarios for
self-similar growth of RT:

(a) Nonlinear coupling of saturated short wavelengths (merger).
(b) Amplification and saturation of ambient modes (competition).

Experiments by Dimonte & Schneider (2000) and Ramaprabhu & Andrews (2004)
have shown the presence of long wavelengths in their initialperturbations, suggesting
that experiments do not evolve purely through merger. We conclude that these two
processes exist simultaneously in experiments, and are in competition with each other.

To test these ideas, we performed numerical simulations with and without long
wavelength content in the initial conditions. In these simulations, the non-dimensional
initial amplitudes (k〈h0k〉) varied from ∼ 10−6 to 10−1. We show that with broadband
perturbations, αb increases logarithmically with the initial amplitudes even after ∼ 3.7
generations of bubble evolution (this implies that slight variations in the value of
αb observed in experiments, could in fact be due to large (100 × ) differences in
the initial amplitudes). Conversely, in the pure mode-coupling limit αb takes up a
universal, lower bound value of ∼ 0.025. These ideas were formalized by Dimonte
(2004), and have been verified through our simulations. The role of initial conditions
in the evolution of turbulent RT flow was also studied by Dalziel et al. (1999), who
reported sensitivity of αb to the presence of long-wavelength information in their
initial conditions.
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In an earlier study, the mode-coupling limit was explored in detail by comparing
results from different benchmark codes used in RT (Dimonte et al. 2004). Many
RT simulations are initialized with an annular spectrum (Cook & Dimotakis 2001;
Young et al. 2001; Youngs 2003), and evolve purely through mode-coupling. We
offer this as an explanation for the discrepancies in αb obtained from simulations and
experiments. In this paper, we have shown that with a broadband spectrum, numerical
simulations can produce the higher growth rates observed in experiments. We are able
to reproduce experimental results even with the numerical diffusion present in our
simulations. In fact, front-tracking simulations (Glimm et al. 1990) also give lower
growth rates at late time (when entrainment and diffusion reduce the local buoyancy
driving forces) suggesting that numerical diffusion alone is not sufficient to explain
these differences.

Note that mode-coupling exists even in simulations initialized with broadband
perturbations. This can be described by adding the daughter products of mode-
coupling in quadrature to the amplitudes of the ambient modes. This decreases the
sensitivity of αb and other self-similar parameters at low amplitudes of the ambient
perturbations. At higher k〈h0k〉, the amplification rate exceeds the mode-coupling rate
and αb and βb exhibit greater sensitivity to the initial amplitudes. This transition from
mode-coupling dominance to a scenario dominated by bubble competition occurs in
our simulations at k〈h0k〉 ∼ 3 × 10−4. While it is unclear how these two effects may
be isolated, we suggest simulations of the interactions of three-dimensional bubbles
of different wavelengths to study the bubble merger rates, which may be used to
quantify the effect of mode-coupling on αb and βb.

Both αb and βb are reduced in value by the densification of bubbles owing to
entrainment and numerical diffusion. Some of this diffusion is due to the inability of
the numerical scheme to resolve small scales generated as a result of mode-coupling.
Two modes n1 and n2 can interact nonlinearly to give products n1 − n2 and n1 + n2.
If n1 + n2 > 24, these modes cannot be captured at the current resolution, resulting
in numerical diffusion.

While αb and βb represent the large-scale dynamics of the flow, small-scale effects
such as the molecular mix fraction Θ , the bubble density ρb, and the kinetic energy
dissipation are weakly sensitive to k〈h0k〉. These parameters also transition from mode-
coupling to bubble competition at k〈h0k〉 = 3 × 10−4, suggesting that this may be a
universal transition point. As noted previously, when the bubble behaviour is con-
sidered separately, the entrainment and molecular diffusion within the bubbles increase
slightly with the initial amplitudes. These observations are supported by centreline
density spectra from the simulations, which show variations at the large scales (αb)
and convergence to a uniform structure at the small scales (Θ and D/	P.E.). Thus, it
appears that the variation of these parameters is due indirectly to large-scale vortical
motion (entrainment), and not localized small-scale dynamics (diffusion).

To calculate βb, the bubble diameter was first computed using an autocorrelation
procedure, and then related to the bubble wavelength using Daly’s parameterization
(λb = Db2/(1 + A)). This definition was proposed by Daly (1967) to account for the
dissimilar behaviours of bubbles and spikes in different Atwood regimes. At small A,
the flow is symmetric and the spikes and bubbles are of the same size and λb ∼ 2Db,
whereas at large A, the spikes are very narrow and λb ∼ Db. However, Sohn (2003)
and Gonchorov (2002) obtain λb ∼ Db independent of A, from their potential flow
analyses of single-mode RT flows in contrast to Daly. Published numerical simulations
(Tryggvason & Unverdi 1990; Li, Jin & Glimm 1996; Dimonte et al. 2004) of single-
mode RT flows do not conclusively support one scaling over the other. In these
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single-mode studies, a periodic array of RT bubbles was considered. We believe that
in the self-similar regime, RT bubbles are more likely to resemble isolated thermals
in an infinite bath. This is because a localized perturbation to an RT bubblefront
with a periodic structure would cause the perturbed bubble to rise up with a velocity
proportional to the square root of the perturbation wavelength. The reduced counter-
flow drag experienced by such a leading bubble would also contribute to a higher Fr
number (∼ 1) in agreement with experiments and the numerical simulations reported
here. Further simulations of such isolated RT bubbles, outside the scope of this work,
are required to determine the correct scaling relationship.

To complete the investigation, other effects such as the structure of the initial
spectra (characterized by the slope), and the longest wavelength imposed were also
considered. Spectra with amplitudes varying as k−2, k−1 and k0, but with the same
r.m.s. amplitudes k〈h0k〉 were used (to satisfy the condition for self-similarity, a k−2

spectral structure is required). To study the effect of the longest wavelength imposed
in the initial conditions, the smallest mode-number in the wavepacket, Nmin was varied
from 1 to 3. Both studies show that αb and βb (and the small-scale parameters) are
insensitive to such effects. For much higher values of Nmin, we expect mode-coupling
to play a more dominant role, accompanied by a decrease in αb.

Furthermore, αb can also depend on the extent of physical or numerical diffusion,
and other stabilizing mechanisms. For instance, αb increased by 20 % in the LEM
experiments with high surface tension between the fluids (Dimonte & Schneider 2000).
Higher-resolution simulations (preferably DNS) and experiments are required to test
these issues in greater detail.
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Appendix. Model formulation
A synopsis of the model describing the role of initial conditions on αb and βb

is provided here (for a detailed description, see Dimonte 2004). The transition to
nonlinearity of a mode k of amplitude hk occurs when khk ∼ 1, as the linear velocity
of the mode ∼ Γ hk , approaches its terminal velocity ∼

√
Atg/k – this is referred

to as the Fermi transition (Layzer 1955). Haan (1989) considered the interaction
of neighboring modes of similar phases that can interfere constructively, triggering
transition at smaller initial amplitudes. In this scenario, the modes in a wavepacket
of width δk transition when their r.m.s. amplitude defined as

〈hk〉 =

(
L2

2π

∫ k+δk

k−δk

h2
kk

′ dk′
)1/2

, (A 1)

exceeds the nonlinear threshold (thus, the threshold for nonlinear transition is modi-
fied as k〈hk〉 ∼ 1, where k is now the central wavenumber of the wavepacket). Dimonte
(2004) estimates the width of the wavepacket as δk ∼ 3k/8. In this picture, the central
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wavenumber is the bubble wavenumber kb, and the width of the wavepacket is
δk = (kb − ks)/2, where ks is the wavenumber of the mode that has just reached its
saturation amplitude. An e−2 profile is assumed for the energy distribution of the
wavepacket with the peak at kb.

If we take hb to be the leading bubble amplitude (i.e. of the central mode), then
the variance of amplitudes range from 0 to h2

b, and the mean of these fluctuations
is 〈hk〉2 = h2

b/2 or 〈hk〉 ∼ hb (Haan 1989). Then, applying the Fermi transition (Γ hb =
C

√
Atgλb/2) to the bubble in a wavepacket, we obtain

kb〈hk〉 ∼ C
√

π. (A 2)

The evolution of 〈hk〉 in the nonlinear regime can be written as

hb = 〈hk〉 = C
√

π

(
1

k
+ Fr

√
Ag

k
(t − tk)

)
, (A 3)

where tk is the time at which the nonlinear saturation occurs. Here, tk is obtained by
inverting hk = cosh(

√
Akgt) and using (A 2):

tk ∼ 1√
Akg

cosh−1

[
C

√
π

k〈h0k〉

]
. (A 4)

Thus, the self-similar bubble amplitude has been expressed as a function of the initial
r.m.s. amplitude 〈h0k〉 and a modified Froude number C. The dominant wavelength
λb in the wavepacket is obtained by finding the maximum of (A 3):

∂hb

∂λb

=
C

2
√

π

(√
Ag

2λb

t + 1 − ln

(
C

√
π

kb〈h0k〉

))
= 0, (A 5)

This gives

λb =
πAgt2

2

(
ln

(
2C

√
π

kb〈h0k〉

)
− 1

)2
. (A 6)

Combining (A 6) with (A 3), and the definition for βb, we get two equations describing
the dependence of αb and βb on k〈h0k〉:

αb =
C

√
π

4

[
ln

(
2C

√
π

kb〈h0k〉

)
− 1

]−1

, (A 7)

βb =
2

√
π

C

[
ln

(
2C

√
π

kb〈h0k〉

)
− 1

]−1

, (A 8)

Thus according to this model, both αb and βb depend logarithmically on k〈h0k〉
(qualitatively similar to Birkhoff’s model 1955). For self-similarity (constant αb and
βb), (A 1), (A 7) and (A 8) require that hk ∼ k−2.
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